Como a existência de espectro de linhas é consistente com a teoria de Bohr sobre energias Quantizadas para o elétron no átomo de hidrogênio?

O texto Átomo de Rutherford mostrou que, segundo os estudos desse cientista, um modelo atômico que explicaria as propriedades da matéria seria que o átomo é composto de um pequeno núcleo positivo (constituído por prótons e nêutrons) onde está inserida a massa praticamente total do átomo, envolta de uma região denominada eletrosfera onde os elétrons ficam girando.

No entanto, o modelo atômico de Rutherford possuía alguns erros. Por exemplo, o elétron possui carga negativa, portanto, se ele girasse ao redor do núcleo, que é positivo, ele iria perder energia na forma de radiação, com isso, suas órbitas iriam diminuir gradativamente e os elétrons iriam adquirir um movimento espiralado, acabando por se chocar com o núcleo.

Mas isso não ocorre na prática. Por isso, em 1913, o cientista Niels Bohr (1885-1962) propôs um modelo que se baseou no modelo de Rutherford, apenas aprimorando-o, por isso ele passou a ser chamado de modelo atômico de Rutherford-Bohr.

Bohr se baseou também na teoria quântica da energia de Max Planck e nos espectros de linhas dos elementos para criar os seguintes princípios fundamentais:

  1. Os elétrons não se movem aleatoriamente ao redor do núcleo, mas sim em órbitas circulares, sendo que cada órbita apresenta uma energia bem definida e constante (nível de energia) para cada elétron de um átomo. Quanto mais próximo do núcleo, menor a energia do elétron, e vice-versa;
  2. Os níveis de energia são quantizados, ou seja, só são permitidas certas quantidades de energia para o elétron cujos valores são múltiplos inteiros do fóton (quantum de energia);
  3. Para passar de um nível de menor energia para um de maior energia, o elétron precisa absorver uma quantidade apropriada de energia. Quando isso ocorre, dizemos que o elétron realizou um salto quântico e atingiu um estado excitado. Esse estado é instável e quando o elétron volta para o seu nível de energia original (estado fundamental), ele libera a energia que havia absorvido na forma de onda eletromagnética.

Esse último postulado explica porque os fogos de artifício emitem cores diferentes. Cada sal presente nos fogos de artifício possui um cátion de elementos químicos diferentes. Quando são aquecidos, os elétrons desses elementos saltam de nível de energia, mas quando voltam para o nível original, eles emitem a energia que foi absorvida na forma visível. Cada cor corresponde a uma quantidade de energia característica. Por exemplo, se usarmos um sal de cobre veremos a cor azul, já se usarmos um sal de bário, a cor emitida será a verde e assim por diante. Outras cores podem ser vistas no texto Química dos Fogos de Artifício.

Não pare agora... Tem mais depois da publicidade ;)

Os níveis de energia para os átomos dos elementos conhecidos são no máximo 7 e são representados pelas letras K, L, M, N, O, P, e Q.

* Crédito da imagem: Antonio Abrignani e Shutterstock.com.

Conforme mostrado nos textos “Espectro eletromagnético dos Elementos Químicos”   e “Espectros de Emissão e de Absorção e Leis de Kirchhoff”, os espectros descontínuos de emissão de cada elemento químico são diferentes.

Assim, abaixo temos os espectros distintos de alguns desses elementos:

Desse modo, o físico dinamarquês Niels Böhr (1885-1962) percebeu que isso poderia estar relacionado à estrutura do átomo de cada um desses elementos. Por isso, ele propôs um modelo atômico que complementava o modelo de Rutherford, mas que se concentrava no comportamento dos elétrons ao redor no núcleo do átomo.

Algum tempo antes, Max Planck (1858-1947) havia proposto uma teoria que afirma que os elétrons são quantizados, no sentido de que eles emitem e absorvem quantidades específicas de energia, como se fossem pequenos pacotes de energia, os quais ele chamou de quanta (quantum, no singular).

Assim, Böhr propôs o seguinte: visto que cada elemento tem um espectro diferente, cada elemento possui em seu átomo elétrons de energias constantes e diferentes de elemento para elemento.

Cada elétron só pode ficar em determinada órbita específica, pois em cada uma dessas órbitas o elétron apresenta energia constante, bem definida e característica. O elétron só pode ocupar os níveis energéticos dos quais ele possua a energia respectiva.

Não pare agora... Tem mais depois da publicidade ;)

Os espectros são descontínuos porque os elétrons são quantizados.

Um elétron só poderá mudar de nível se ele absorver energia. Por exemplo, quando se queima um sal do sódio no bico de Bunsen, estamos fornecendo energia para os elétrons. Ao absorver um quantum de energia, o elétron salta para o outro nível mais energético, ficando no estado excitado. Porém, o estado fundamental é mais estável, por isso esse elétron emite a energia absorvida e volta para a sua órbita original. Ele emite essa energia na forma de ondas eletromagnéticas que podem ser visualizadas na forma de luz. No caso do sódio, essa luz é na cor amarela intensa. Assim, quando essas ondas passam por um prisma, obtém-se o espectro descontínuo do sódio.

Assim, para Böhr, cada linha luminosa que aparecia no espectro descontínuo dos elementos indicava a energia liberada quando o elétron voltava de um nível mais externo para o outro mais próximo do núcleo.

A figura abaixo ajuda a entender melhor essa questão:

Como para os átomos de cada elemento só são permitidos determinados valores de energia que correspondem às camadas energéticas, para cada elemento se tem, então, um espectro diferente.


Por Jennifer Fogaça
Graduada em Química

Como a existência de espectro de linhas é consistente com a teoria sobre energias Quantizadas no átomo de hidrogênio?

Quando aumenta a densidade do gás atômico, as linhas espectrais separadas alargam-se e, por fim, quando a densidade do gás é muito grande e a interação dos átomos se torna significativa, então estas linhas cobrem-se umas às outras, formando um espectro contínuo.

Como o modelo de Bohr explica os espectros de linhas?

De forma simples, Bohr afirmou que as linhas de cores do espectro de hidrogênio eram resultantes do movimento dos elétrons entre as camadas, ou seja, fruto da transição eletrônica entre as camadas. Afinal, ao retornar ao estado fundamental, o elétron emite radiação na forma de luz (cor).

Como Bohr explicou o aparecimento das linhas espectrais para o átomo de hidrogênio?

De acordo com o modelo electrodinâmico clássico, uma carga sujeita a aceleração centrípeta numa órbita circular, deve emitir continuamente radiação electromagnética. Assim, devido à perda de energia, o electrão deveria descrever uma espiral e "cair" para o núcleo num prazo relativamente curto de tempo.

Quantos é quais foram os postulados de Bohr em seu modelo para o átomo de hidrogênio?

Os postulados de Bohr são os seguintes: Os elétrons percorrem órbitas circulares ao redor do núcleo, denominadas órbitas estacionárias. Cada órbita circular apresenta uma energia constante. Logo, os elétrons não absorvem nem emitem energia ao descreverem uma órbita estacionária.

Toplist

Última postagem

Tag