Que tipo de interação são responsáveis por manter a estrutura tridimensional de uma proteína?

A estrutura das proteínas diferencia-se quanto à quantidade de cadeias peptídicas envolvidas e ao tipo de interação entre elas.

Entre os compostos orgânicos presentes em um organismo vivo, as proteínas são as substâncias encontradas em maior quantidade, representando de 50% a 80% dos tecidos do organismo, por apresentarem uma grande função estrutural.

Na estrutura das proteínas, há apenas quatro elementos químicos: carbono (C), hidrogênio (H), nitrogênio (N) e oxigênio (O). Esses elementos formam unidades moleculares denominadas de aminoácidos.

Assim, na realidade, a estrutura de uma proteína baseia-se na ligação de várias unidades individuais (monômeros) de aminoácidos, os quais são formados por um grupo carboxila e um grupo amino. Essa ligação gera uma grande estrutura, ou seja, uma macromolécula.

A união entre os aminoácidos dá-se por meio de uma ligação peptídica, na qual a carboxila de um aminoácido perde sua hidroxila (grupo OH) e o grupo amino de outro aminoácido perde um hidrogênio, formando uma molécula de água. Em seguida, o carbono da carboxila (ácido carboxílico) une-se ao nitrogênio do grupo amino (amina) do outro aminoácido.

Estrutura primária

A estrutura primária de uma proteína nada mais é que uma sequência de aminoácidos. Essa sequência, como podemos observar na estrutura a seguir, inicia-se no grupo amino (à esquerda) e prossegue até o grupo carboxila (à direita).


Estrutura primária de uma proteína

Nesse tipo de estrutura, temos uma sequência linear de aminoácidos, não havendo nenhuma ramificação.

Estrutura secundária

A estrutura secundária de uma proteína é o resultado da extensão ou do prolongamento de uma estrutura primária. Assim, à medida que a cadeia peptídica (de aminoácidos) aumenta, uma parte de um aminoácido interage com a de outro, em pontos centrais da estrutura, o que pode acontecer de duas formas:

Não pare agora... Tem mais depois da publicidade ;)

  • Em forma de folha:


Representação da estrutura secundária de uma proteína

Nesse tipo de forma, as cadeias laterais da proteína interagem entre si, em um mesmo plano.

  • Em forma de hélice:


Representação da estrutura secundária de uma proteína

Nesse caso, os resíduos das cadeias de aminoácidos interagem entre si, de forma que a resultante é uma estrutura helicoidal (formato cilíndrico).

Em ambos os casos, as interações entre os aminoácidos podem ocorrer por meio de ligações de hidrogênio ou por pontes de enxofre.

Estrutura terciária


Representação da estrutura terciária de uma proteína

A proteína de estrutura terciária é formada quando duas estruturas secundárias interagem por meio de seus resíduos (átomos de enxofre, de oxigênio ou de hidrogênio, por exemplo), a partir de:

  • Forças de atração ou repulsão eletrostática;

  • Pontes de hidrogênio;

  • Forças de Van der Waals;

  • Pontes de dissulfeto.

Estrutura quaternária


Representação da estrutura quaternária de uma proteína

Na estrutura quaternária da proteína, há a presença de duas ou mais cadeias peptídicas separadas, formando um arranjo oligomérico que se relaciona por meio de diversas interações, como na estrutura terciária:

  • Pontes de hidrogênio;

  • Atrações eletrostáticas;

  • Interações hidrofóbicas;

  • Pontes dissulfeto.

A estrutura da proteína refere-se a sua conformação natural necessária para desempenhar suas funções biológicas.

As proteínas são macromoléculas formadas pela união de aminoácidos.

Os aminoácidos são unidos entre si por ligações peptídicas. As moléculas resultantes da união de aminoácidos são denominadas de peptídeos.

As proteínas apresentam quatro níveis estruturais: estrutura primária, secundária, terciária e quaternária.

Estrutura primária das proteínas

A estrutura primária corresponde à sequência linear dos aminoácidos unidos por ligações peptídicas.

Em algumas proteínas, a substituição de um aminoácido por outro pode causar doenças e até mesmo levar à morte.

Estruturas espaciais das proteínas

As estruturas espaciais das proteínas são resultantes do enrolamento e dobramento do filamento proteico sobre si mesmo.

As propriedades funcionais das proteínas dependem da sua estrutura espacial.

Estrutura Secundária

A estrutura secundária corresponde ao primeiro nível de enrolamento helicoidal.

É caracterizada por padrões regulares e repetitivos que ocorrem localmente, causada pela atração entre certos átomos de aminoácidos próximos.

Os dois arranjos locais mais comuns que correspondem a estrutura secundária são a alfa-hélice e a beta-folha ou beta-pregueada.

  • Conformação alfa-hélice: caracterizada por um arranjo tridimensional em que a cadeia polipeptídica assume conformação helicoidal ao redor de um eixo imaginário.
  • Conformação beta-folha: ocorre quando a cadeia polipeptídica estende-se em zig-zag e podem ficar dispostas lado a lado.


Estrutura secundária. Em roxo a conformação alfa-hélice e em amarelo a beta-folha

Estrutura Terciária

A estrutura terciária corresponde ao dobramento da cadeia polipeptídica sobre si mesma.

Na estrutura terciária, a proteína assume uma forma tridimensional específica devido o enovelamento global de toda a cadeia polipeptídica.

Estrutura Quaternária

Enquanto muitas proteínas são formadas por uma única cadeia polipeptídica. Outras, são constituídas por mais de uma cadeia polipeptídica.

A estrutura quaternária corresponde a duas ou mais cadeias polipeptídicas, idênticas ou não, que se agrupam e se ajustam para formar a estrutura total da proteína.

Por exemplo, a molécula da insulina é composta por duas cadeias interligadas. Enquanto, a hemoglobina é composta por quatro cadeias polipeptídicas.


1. Estrutura primária; 2. Estrutura secundária; 3. Estrutura terciária; 4. Estrutura quaternária.

Saiba mais sobre as Proteínas.

Desnaturação das Proteínas

Para que possam desempenhar suas funções biológicas, as proteínas precisam apresentar sua conformação natural.

O calor, acidez, concentração de sais, entre outras condições ambientais podem alterar a estrutura espacial das proteínas. Com isso, suas cadeias polipeptídicas desenrolam e perdem a conformação natural.

Quando isso ocorre, chamamos de desnaturação das proteínas.

O resultado da desnaturação é a perda da função biológica característica daquela proteína.

Entretanto, a sequência de aminoácidos não é alterada. A desnaturação corresponde apenas a perda de conformação espacial das proteínas.

Para saber mais, leia também sobre peptídios e ligações peptídicas.

Teste seus conhecimentos com Exercícios sobre Proteínas.

Licenciada em Ciências Biológicas (2010) e Mestre em Biotecnologia e Recursos Naturais pela Universidade do Estado do Amazonas/UEA (2015). Doutoranda em Biodiversidade e Biotecnologia pela UEA.

Que tipo de interações são responsáveis por manter a estrutura tridimensional de uma proteína?

Interações de grupo R que contribuem para a estrutura terciária incluem ligações de hidrogênio, ligações iônicas, interações dipolo-dipolo, ligação iônica e forças de dispersão London – basicamente, toda a gama de ligações não covalentes.

O que determina a estrutura tridimensional de uma proteína?

A estrutura tridimensional de cada proteína é determinada pela sequência de aminoácidos que formam cada polipeptídeo. Veja a seguir os quatro níveis de estrutura das proteínas: Observe como é uma proteína em estrutura primária. Estrutura primária: nada mais é que a sequência de aminoácidos.

Que forças determinam a forma tridimensional das proteínas?

A estrutura tridimensional de uma proteína ou seja, a forma dessa molécula, é determinada por quatro níveis estruturais, a saber: estrutu- ra primária, estrutura secundária, estrutura terciária e estrutura quater- nária. A estrutura primária é a sequência de aminoácidos de uma prote- ína.

Que forças mantém a estrutura de uma proteína?

Forças de atração ou repulsão eletrostática; Pontes de hidrogênio; Forças de Van der Waals; Pontes de dissulfeto.

Toplist

Última postagem

Tag